Search for Invisible Decays of a Dark Photon Produced in e⁺e⁻ Collisions at BaBar

Tomo Miyashita

Caltech

On Behalf of the BaBar Collaboration

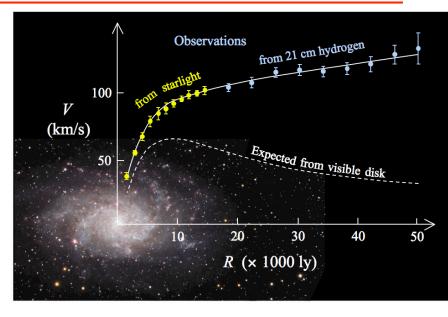
DPF 2017

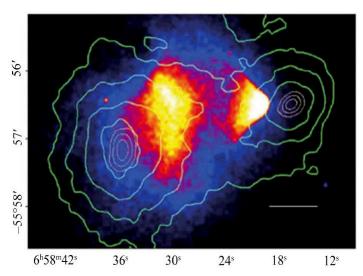
Fermilab August 1st, 2017

Overview

• "Search for invisible decays of a dark photon produced in e⁺e⁻ collisions at BaBar"

arXiv:1702.03327 [hep-ex]

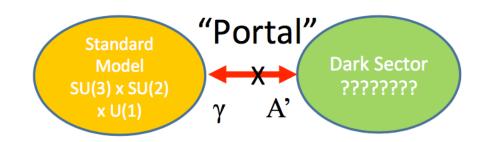

We search for single-photon events in $53~{\rm fb^{-1}}$ of e^+e^- collision data collected with the BABAR detector at the PEP-II B-factory. We look for events with a single high-energy photon and a large missing momentum and energy, consistent with production of a spin-1 particle A' through the process $e^+e^- \to \gamma A'$; $A' \to {\rm invisible}$. Such particles, referred to as "dark photons", are motivated by theories applying a U(1) gauge symmetry to dark matter. We find no evidence for such processes and set 90% confidence level upper limits on the coupling strength of A' to e^+e^- in the mass range $m_{A'} \le 8~{\rm GeV}$. In particular, our limits exclude the values of the A' coupling suggested by the dark-photon interpretation of the muon $(g-2)_\mu$ anomaly, as well as a broad range of parameters for the dark-sector models.



Dark Matter And Dark Sectors

- So far, we have only been able to infer the existence of dark matter through its gravitational effects
 - Null results from direct detection experiments and the LHC motivate the exploration of ideas beyond the standard WIMP paradigm, such as the possibility of light dark sectors
- These dark sectors would contain particles that don't couple directly to the SM
 - Theoretical motivation comes from string theory and many other BSM scenarios that include an extra U(1) symmetry
 - Dark matter could be a part of a dark sector and may consist of more than one dark sector particle
 - Furthermore, such a dark sector could have a rich structure beyond the particle(s) we refer to as dark matter

M33 Rotation Curves



Bullet Cluster Weak Lensing

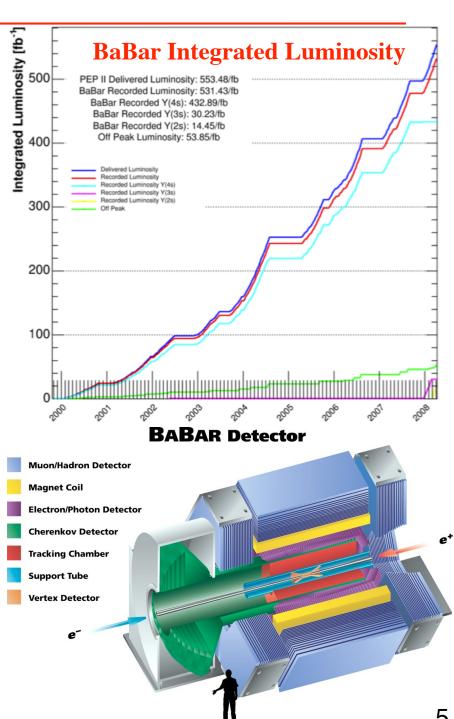
Motivation

- Models have proposed a low-mass spin-1 "dark photon" that is the gauge boson of a new U(1) symmetry and couples to both the SM and the dark sector
- These dark photons could be in the MeV to GeV mass range and could mix with the SM photon with mixing strength ϵ

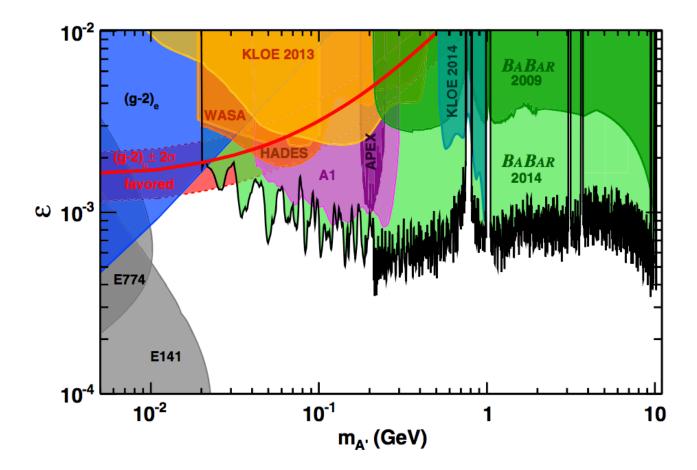
- The dark photon (A') could:
 - Decay to SM fermions if other DM states are inaccessible. This would produce visible decays
 - Decay to a lighter dark matter state χ . If $m_{\chi} < m_{A'}/2$, then the dominant decay mode of the A' would then be invisible: $A' \to \chi \overline{\chi}$
- Could explain phenomena such as the proton charge radius puzzle and the muon $(g-2)_{\mu}$ anomaly:

 Phys. Rev. D 73, 072003 (2006)

$$g_{\mu}(\text{Exp}) \stackrel{?}{=} g_{\mu}(\text{SM}) + g_{\mu}(A')$$



The BaBar Experiment


- Data collected by the BaBar detector at Stanford Linear Accelerator Center
- Asymmetric-energy e^+ and e^- beams
- Designed to be a B factory, operating primarily at $\Upsilon(4S)$ resonance, producing $470 \times 10^6 \ B\overline{B}$ pairs
- This analysis uses 53 fb⁻¹ collected at center-of-mass (CM) energies at/near the $\Upsilon(nS)$ (n=2,3,4) resonances with a special "single photon" trigger

Previous A' Search

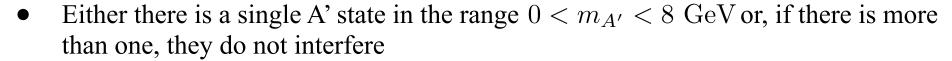
- BaBar previously searched for visible $A' \to \ell^+ \ell^-$ ($\ell = e, \mu$) decays in $e^+ e^- \to \gamma A'$ using 516 fb⁻¹ Phys. Rev. Lett. 113, 201801 (2014)
- Search covered the mass range $0.02 \text{ GeV} < m_{A'} < 10.2 \text{ GeV}$
- No significant signal observed
- Placed 90% C.L. upper limit on mixing strength ϵ at the level of $\sim 10^{-4} 10^{-3}$

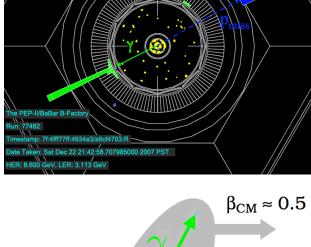
Invisible Decay Search

The present analysis searches for the A' in $e^+e^- \rightarrow \gamma A'$ events where the A' decays

undetectably:

$$\frac{e^{+}}{\alpha'} \stackrel{A'^{(*)}}{\sqrt{\chi}}$$


 $\alpha' = \epsilon^2 \alpha$ $\chi = \text{undetectable DM particle}$

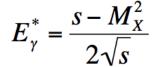


- A' width is negligible compared to experimental resolution
- A' decays predominantly to dark matter

• Do not expect A' production to be affected by the presence of Υ resonances

Single-Photon Trigger

- Detection requires dedicated single-photon trigger:
 - Level-1 Hardware trigger: 1 or more calorimeter clusters with $E_{LAB} > 0.8 \text{ GeV}$
 - Level-3 Software trigger: Two different software triggers were used:


Low M_X

- Require $E_{\gamma}^* > 2 \text{ GeV}$
- No tracks originating from e⁺e⁻ interaction region
- Trigger active for full 53 fb⁻¹ data sample

High M_X

- Require $E_{\gamma}^* > 1 \text{ GeV}$
- No tracks originating from e⁺e⁻ interaction region
- Trigger active for 35.9 fb⁻¹ subset of 53 fb⁻¹ data sample

	Low Mass	High Mass
Υ(4S)	$5.9 fb^{-1}$	
Y(3S)	$28 fb^{-1}$	$20 fb^{-1}$
$\Upsilon(2S)$	$14.4 fb^{-1}$	$14.4fb^{-1}$
off-peak	$4.2 fb^{-1}$	$1.5 fb^{-1}$
Total	$53fb^{-1}$	$35.9 fb^{-1}$

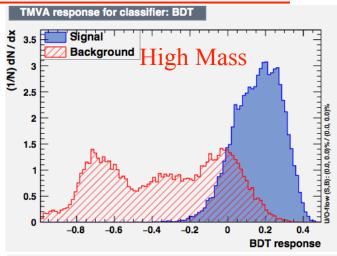
Event Selection

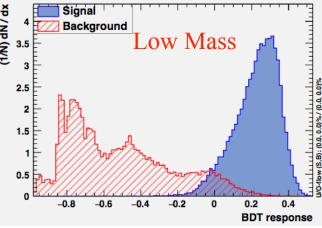
 $\Upsilon(3S)$

$Low M_X$ $-4 \text{ GeV}^2 < M_X^2 < 36 \text{ GeV}^2$

- Dominant Background from $e^+e^- \rightarrow \gamma\gamma$ events where a photon escapes detection
- 1 Electromagnetic Calorimeter (EMC) cluster
- Require $E_{\gamma}^* > 3 \text{ GeV}$
- No drift chamber tracks with momentum $p^* > 1 \text{ GeV}$
- Multivariate discriminator cut

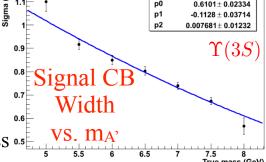
- Dominant background from radiative Bhabha events $(e^+e^- \rightarrow e^+e^-\gamma)$ where the electron and positron escape detection
- 1 EMC cluster with transverse profile consistent with an electromagnetic shower
- Require $E_{\gamma}^* > 1.5 \text{ GeV}$
- No drift chamber tracks with momentum $p^* > 0.1 \text{ GeV}$
- Multivariate discriminator cut




Multivariate Selection

- Apply additional selection criterion using Boosted Decision Tree (BDT) multivariate discriminator
- The BDT is trained separately for the Low Mass and High Mass samples
- 12 discriminating variables including:
 - Shape parameters for the most energetic EMC cluster
 - Total EMC energy without the most energetic cluster
 - E^* , θ^* , and $\Delta \phi^*(E_1)$ of the second most energetic EMC cluster
 - E_{+}^{*} θ_{+}^{*} and $\Delta \phi^{*}(E_{1})$ of the Instrumented Flux Return (IFR) cluster closest to the missing momentum direction

- 25k simulated signal events with uniformly distributed A' masses
- 25k background events from the $\Upsilon(3S)$ sample



Signal Extraction I

- Optimize event selection to minimize the expected upper limit on the $e^+e^- \to \gamma A'$ cross section $\sigma_{A'}$
- Use A' mass and BDT output to subdivide data samples
 - Low $m_{A'}$ ($m_{A'} < 5.5 \text{ GeV}$): 3 BDT selection criteria (Loose Signal, Tight Signal, Background) applied to $\Upsilon(2S)$, $\Upsilon(3S)$, and $\Upsilon(4S)$ samples
 - High $m_{A'}$ ($5.5 < m_{A'} < 8 \text{ GeV}$): 2 BDT selection criteria (Loose Signal, Background) applied to $\Upsilon(2S)$ and $\Upsilon(3S)$ samples
 - Note: The Low M_X dataset includes Low $m_{A'}$ and High $m_{A'}$ bins, while the High M_X dataset only includes a High $m_{A'}$ bin
- Signal extraction from missing mass distribution:
 - Background distribution:
 - Taken from data with -0.5 < BDT < 0
 - Crystal Ball function (peaking bkg) plus 2nd order polynomial (low mass region) or sum of exponentiated polynomials (high mass region)
 - Signal Distribution:
 - Taken from high statistics simulation
 - Crystal Ball (CB) function with its width dependent on missing mass o.s.

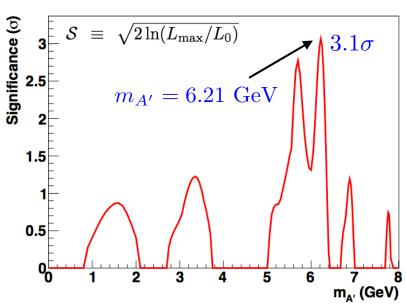
Signal Extraction II

- Extract yields in simultaneous unbinned maximum likelihood fit to:
 - 9 independent samples in Low m_A, region

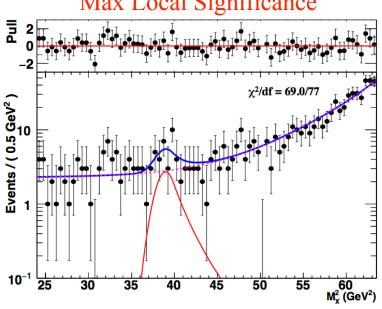
• 4 independent samples in High m_{A'} region

	Dataset	"lowM"				"highM"				
	Dataset	\mathcal{L}	Selection			\mathcal{L}	Selecti	on		
			\mathcal{R}_B				\mathcal{R}_B	_		
1	$\Upsilon(2S)$	$15.9{ m fb}^{-1}$	22,590	42	6	$15.9{\rm fb}^{-1}$	405,441	324		
I	$\Upsilon(3S)$	$31.2{\rm fb}^{-1}$	68,476	129	26	$22.3{ m fb}^{-1}$	719,623	696		
	$\Upsilon(4S)$	$5.9{\rm fb}^{-1}$	7,893	16	9					

12


Example fits to M_X^2 distributions: $\chi^2/df = 29.7/38$ $\chi^2/df = 16.8/35$ Low ma' Low ma' Low ma' $\Upsilon(2S)$ $\Upsilon(4S)$ $\Upsilon(3S)$ High m_{A'} = Bkg only fit

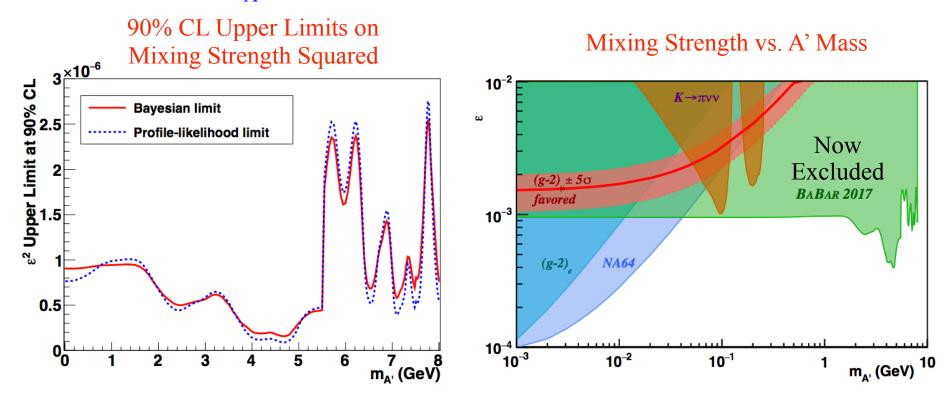
M_v (GeV²)


Significance Scan

• Scan $m_{A'}$ between 0 and 8 GeV in 166 steps (step size is approximately half the mass resolution)

Local Signal Significance

• Highest signal significance for $m_{A'} = 6.21 \text{ GeV}$


$$S_{\text{local}} = 3.1\sigma$$
 $S_{\text{global}} = 2.6\sigma$

Upper Limits

• As we see no significant signal, we set upper limits on the mixing parameter ϵ as a function of $m_{A'}$

• With our new measurement, we can rule out the dark photon as an explanation for the $(g-2)_{\mu}$ anomaly

Summary

- We have performed a search for invisible decays of a dark photon A' in $e^+e^- \rightarrow \gamma A'$ events $\frac{\text{arXiv:1702.03327 [hep-ex]}}{\text{arXiv:1702.03327 [hep-ex]}}$
 - No significant signal is observed, with the highest significance corresponding to $m_{A'} = 6.21 \text{ GeV}$ with $\sigma_{\text{global}} = 2.6$
- In the absence of an observation, we place 90% CL upper limits on the dark photon mixing parameter ϵ in the region $m_{A'} < 8 \text{ GeV}$
 - The region of A' parameter space favored by the $(g-2)_{\mu}$ anomaly has now been excluded by searches for visible and invisible decay channels
 - Our limits are a significant improvement over previous results and constrain dark-sector models across a broad region of A' parameter space
- BaBar is continuing to search for a dark photon decaying to visible states

